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Abstract -We investigate in this paper the non-uniform sampling
of EEG dipolar potentials and its impact on source analysis. We
suppose some a priori knowledge on the approximate location of
the dipole. We show that, in a noise-free situation, the electrode
spacing needs to be around 3cm in the region of the dipole only,
whereas it can drop to 8cm in remote regions.
Keywords - EEG source analysis, non-uniform sampling,
potential on a sphere

I. INTRODUCTION

In electrophysiology, source reconstruction techniques can
be used in order to find the sources of events observed on the
electroencephalogram (EEG), such as evoked potentials or
epileptic spikes. These methods make use of models of the
head (e.g. 3 concentric spheres) and sources  (e.g. current
dipoles). Their aim is to find the set of sources that best
explain the potentials measured at the level of the scalp. The
choice of the number of recording points (electrodes) is
essentially a problem of spatial sampling of the electrical
potential at the head surface. Several authors ([1], [2], [3])
have studied this problem under the angle of Fourier analysis
in order to find the minimum spatial frequency at which one
should sample (Nyquist principle). This led them to the
conclusion that one needs a large number of electrodes (more
than 100) in order to avoid aliasing. It may however be very
time-consuming to place such a large number of electrodes,
which can be problematic - especially in a clinical setting. We
address here the issue of a non-uniform sampling scheme, in
which one would use a priori knowledge in order to put more
electrodes (sampling points) in the regions were the potential
has the higher spatial frequency content.

We studied non-uniform sampling of the potential of a
dipole located close to the surface in a spherical model. We
used the distortion approach of [4] in order to estimate the
local bandwidth. We smoothed this function in order to take
into account the uncertainty on dipole location that would
exist in a real situation. We obtained a sampling scheme, and
compared it with standard uniform (10/10 system) and non-
uniform schemes using a dipole scan.

II. METHODOLOGY

A. Dipole potential

We used the classical 3-sphere mode in order to simulate
the potential of a dipolar source located 3mm under the brain
surface [5] (Fig. 1). This configuration is representative of the

higher spatial frequency content one can get in EEG: the
dipole is the most concentrated measurable source, and the
"sharpness" of the potential increases with eccentricity. As
the potential is invariant by rotation around the axis passing
through the dipole, we will reduce the two-dimensional
problem of sampling the potential P(θ,φ) to the much simpler
one-dimensional situation {P(θ),θ∈ [-π,π]} .

B. Non-uniform sampling scheme

We used the approach in [4] that proposes to find - when
possible - a nonlinear coordinate transformation θ' = γ(θ) in
order to map P(θ) onto a band-limited h(θ')=P(γ-1(θ')). We
chose h(θ')=cos(θ'), the simplest function that meets these
requirements. In [4], the band-limited function is uniformly
sampled at θ'n, n= 0,…N, and a non-uniform sampling
scheme is obtained at θn = γ-1(θ'n) (Fig. 2).
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Fig. 2: Coordinate transformation between the band-limited function h(θ')
(sampled uniformly), and the potential P(θ) (sampled non-uniformly).
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Fig.1: Coordinates (θ,ϕ) of a point on the surface of the
outer sphere (dot) and schematic view of the dipole (arrow).
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If h(θ') is bounded in frequency by B0, then we can define for
P(θ) the "local" bandwidth B(θ) as

B(θ)=B0 ∂γ/∂θ (1)

In our case, B0 = 1/(2πR) cycles⋅cm-1, with R head radius.

The mapping γ(θ) can be seen as a 'distortion' function that
compresses the abscissa where the local bandwidth B(θ) is
higher than B0 and dilates it when B(θ) is smaller than B0.
Thus, a higher rate of distortion indicates a higher local
bandwidth. Once B(θ) is obtained, one can get the minimum
local sampling rate Fmin(θ) as

Fmin(θ) = 2⋅B(θ) (2)

In source analysis methods, one does not know by
definition where the source lies. However, there is often some
a priori knowledge of the region where the source should be,
e.g. a fraction of a brain lobe. This region can be represented
in our model by an angular interval, say [-θmax, θmax]. We
chose to translate this interval of uncertainty by smoothing
(i.e. convolving) the dipole spatial bandwidth with a gaussian
filter G(θ) of FWHM 2⋅θmax :

Bsmoothed(θ) = G(θ)*B(θ) (3)

In this study, θmax=π/8 (the distance between two electrodes
in the 10/10 system).

In the dipolar potential case, we were confronted with the
fact that the frequency varies very rapidly with θ. This makes
it especially difficult to define a sampling scheme that obeys
(2), as the local bandwidth varies significantly from one
sample to the next. We chose to start at θ0=0 - the center of
symmetry of the potential - and take consecutive samples as:

θI+1=2⋅ Bsmoothed(θi) (4)

As Bsmoothed(θ)decreases with |θ|, (4) insured that the distance
between a point at θi and any neighbor was no more than
2⋅B(θi).

C. Comparison of sampling schemes

The different sampling schemes are summarized in Table I.
For each scheme {θi , i=1,…n} we calculated at each point
(x,y) of a 10mm-spaced 2D grid the dipole that fits best the
data P(θi) in a least-square sense.

TABLE I: SAMPLING SCHEMES

Name Minimum
spacing (angle)

Maximum
spacing (angle)

# points

1 10/10 36mm (π/8) - 11

2 10/20 72mm (π/4) - 5

3 Non-uniform 29mm 81mm 7

(Distances are given for a head radius of 92mm)

We measured the goodness of fit (g.o.f.) of the potential Px,y
fit

by:

(5)

III. RESULTS

Figure 3 presents the normalized local bandwidth B(θ)/B0.

It reaches a peak of approximately 10, which corresponds
according to (2) to a minimum spacing of
1/ Fmin(θ)=2πR/(2*10)≈ 29mm. Moreover, B(θ)/B0 decreases
fast with |θ|: it passes below 20% of the peak for |θ|≈π/9.

Figure 4 presents the different sampling schemes and the
g.o.f. surfaces computed according to (5). One can interpret
the surfaces in the following manner. At a given distance
from the true dipole location, the smaller the g.o.f., the less
likely will this point become a global maximum in a more
realistic noisy situation. In other words, with a steeper
surface, one would expect a smaller mean localization error.

We observe in Fig. 4 that the surface corresponding to the
non-uniform scheme behaves similarly to that of the 10/10
scheme in the region of the dipole. At a distance, the behavior
is more that of the 10/20, which is less critical because we are
dealing with much smaller g.o.f. in these regions.

IV. DISCUSSION

We have found in our example that one needs a sampling
period of approximately 3cm in the region of the dipole. This
is in the range of values given in the literature, and close to
the 10/10 spacing. However, in regions far away from the true
dipole location, the sampling rate can drop to values of the
order of those of the 10/20 system without a significant loss
of source analysis performance, at least in a noise-free
situation.

,

2

2

[ ( ) ( )]
( , ) 1

[ ( )]

x y

fit
i i

i

i
i

P P
gof x z

P

θ θ

θ

−
= −

∑
∑

Fig. 3: Normalized local spatial frequency B(θ)/B0 for a radial
dipole 3mm below the brain sphere.
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V. CONCLUSION

We presented a method in order to construct an optimal
sampling scheme of a dipolar field, based on non-uniform
sampling theory and some a priori knowledge on dipole
localization. This paper is set in the framework of dipole
source analysis, but the method can be extended to more
general spatial sampling problems.
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Fig. 4: The different sampling schemes with the original dipole location (left)  and the corresponding g.o.f. surfaces (right):
(a) 10/10, (b) 10/20, (c) non-uniform. Note how g.o.f. surfaces peak at the original dipole location.
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